

DIGITAL COMMUNICATION USING THE PIC16F84A
MICROCONTROLLER

Melonee Wise
Physics344
Fall 2003

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 2/21

TABLE OF CONTENTS

PURPOSE ... 3

A PROTOTYPE ROBOT.. 4

Alpha Zippy ... 4

Tether Controlled H-bridge Circuit.. 5

COMMUNICATION HARDWARE AND METHODS... 6

1. PIC Setup ... 6

Project Window... 6

2. Initial Testing .. 7

LED Flasher Code... 7

Simple LED Flasher Circuit ... 8

3. Interrupts... 8

Interrupt Code ... 9

4. PWM (Pulse Width Modulation)... 10

PWM Code.. 10

PWM Test Circuit ... 12

5. Sending and Receiving Data .. 13

Send Code ... 13

Receiver Code... 15

Sender/Receiver Circuit .. 18

6. RF ... 19

Transmitter Circuit ... 19

Receiver Circuit .. 20

THE TEST DRIVE .. 20

THE CREATOR .. 21

Melonee and Zippy.. 21

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 3/21

Purpose

The purpose of this project is to develop digital communication using the PIC16F84A
microcontroller for interface with RF transceivers to control a robot. The specific goals of
the project are:

1. Construct Prototype Robot
2. PIC Chip Setup

- Obtain necessary software (MPLAB IDE and PICPRO).
- Setup new project within MPLAB.
- Configure the assembler code properly for the PIC16F84A chip.

3. Hardware Design
- Design necessary test circuitry to test each software progression.
- Design necessary circuitry to interface the PIC chips and the RF modules

with the prototype robot.
4. Software Design

- Write a LED flasher program.
- Write an interrupt program.
- Write a PWM program.
- Write a sender program.
- Write a receiver program.

5. Test the PIC send and receive protocol.
6. Test the PIC chip with RF.
7. Drive robot around using digital RF controller.

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 4/21

A Prototype Robot

 For this project a prototype robot, Zippy, was built (Figure 1).

Figure 1 Alpha Zippy

 Zippy’s main components consist of:
 2 pieces of plywood
 2 bicycle training wheels
 4 bicycle training wheel brackets
 2 Pitman motors (donated by the ECE department)
 1 12V motorcycle battery
 2 pieces of 1 ½ PVC pipe (hold the motors and shafts in place)
 2 yards of rope
 2 tape holders (counterbalance the battery)
 10 or so nuts and bolts
 2 H-bridges
 1 receiver
 1 kill switch

Of the hardware used to construct Zippy only the electrical components will be
discussed within this report because it obvious to see the degree of craftsmanship
that was necessary to construct the prototype.

Initially Zippy was a tether controlled robot, a switch controller was linked
directly to the speed controller. The speed controller consisted of two H-bridges
that controlled each motor separately. The N-type and P-type mosfets were
salvaged off of old computer boards and can handle a max of 6 Amps. A 12V
motor cycle battery was used to power the motors and four, slightly used, 1.5V
(double A) batteries were used to power the switch logic. A 3 Amp fuse was used
on the 12V battery to stop potential hazards (i.e. fires, exploding mosfets, ect.).

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 5/21

Figure 2 Tether Controlled H-bridge Circuit

N

M

N
N P

M

N P 5V

PIN1
PIN2
PIN3
PIN4
PIN5
PIN6
PIN7
PIN8PIN9

PIN10
PIN11
PIN12
PIN13
PIN14
PIN15
PIN16

Optical Isolator

3 Amp

12V
P

P

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 6/21

Communication Hardware and Methods

1. PIC Setup

Before beginning the project, the necessary programs must be obtained. MPLAB
can be downloaded for free from http://www.microchip.com and a programmer
and programming software can obtained from http://ramseyelectronics.com. After
the proper software and equipment are obtained the PIC chip must be correctly
configured in MPLAB so that it can be programmed properly and functions
properly when tested. Remember to always read the PIC data sheet before
beginning any project.

First a project must be setup in MPLAB by creating a new project using the
project wizard. The project wizard will step through selecting the proper device
(PIC16F84A), the proper language toolsuite (MPASM Assembler), and finally the
project name and directory. Within the project the proper include and linker files
must be added, the include files can be found in the MPLAB_IDE folder under
disPIC_Tools/support/inc and the linker files in the MPLAB_IDE folder under
MCHIP_Tools/Lkr. Finally a main source file must be created for executable
code. When these steps are completed the project window should look similar to
Figure 3.

Figure 3 Project Window

Next it is important to have the proper configuration; this sets the oscillator type,
the watchdog timer, copy protection, and power up timer. For this project, the
main source file is configured in the following manor,

__config _WDT_OFF & _PWRTE_ON & _HS_OSC & _CP_OFF,

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 7/21

this turns the watchdog timer off, the power up timer on, sets the oscillator to high
speed, and turns copy protection off.

Finally the banks, ports, and interrupts must be configured properly. For this
project, the bank is set to bank 0, A ports are set as inputs, B ports are set as
outputs, and to begin with all of the interrupts are disabled. The interrupts will be
used later in the project but for initial testing and setup they are disabled.

2. Initial Testing

To quickly test whether the PIC chip has been configured correctly the following
assembler program and circuit (Figure 4) can be used.

LED Flasher Code:

#include<P16F84A.INC>
 processor 16f84A
 __config _WDT_OFF & _PWRTE_ON & _HS_OSC & _CP_OFF

RESET CODE 0
 GOTO INIT

 CODE
INIT:
 BCF STATUS, RP1
 BSF STATUS, RP0 ;set to bank 1
 CLRF INTCON ;disable all interrupts
 MOVLW B'11111111'
 MOVWF TRISA ;make A ports input
 MOVLW B'00000000'
 MOVWF TRISB ;make B ports output
 MOVLW B'10001000'
 MOVWF OPTION_REG
 BCF STATUS, RP0 ;return to bank 0

START:
 MOVF PORTA, W ;copy PORTA to PORTB
 MOVWF PORTB
 CLRWDT
 GOTO START
 END

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 8/21

Figure 4 Simple LED Flasher Circuit

3. Interrupts

Timing is very important when trying to send and receive data; interrupts can be
used to create the necessary timing. The timer interrupt for the PIC16F84A occurs
every 256 instruction cycles. The amount it takes to complete one instruction
cycle varies based on the frequency of oscillator input and can be calculated using
equation 1,

 1 time to complete one instruction

4

Oscillator frequency
=

 
 
 

. (1)

The time between interrupts is given by equation 2,

4

time between interrupts
256

Oscillator frequency
 
 
  = . (2)

The timer interrupt can be used to call functions at constant intervals by counting
the number of interrupts that occur between calls. Equation 3 can be used to
calculate the number of interrupts that happen in a certain time interval.

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 9/21

4 number of interrupts in x seconds

256

Oscillator frequencytime  ⋅ 
  = . (3)

For this project a 16.25MHz clock was used, all calculations are based on this
oscillator frequency.

When an interrupt occurs the PCL of the chip is set to register 4 in the memory
bank, i.e. the interrupt code must start at 4. When using an interrupt special care
must be taken so that the program returns with all of the correct values in the W
and STATUS registers. For this project interrupts were used as a timer, each time
the interrupt was called it incremented a register which the main program
checked. When the registers reached a certain value/time the send or receive
function was called to send or receive data. Make sure to use the appropriate
number of registers for the amount of time needed, each register can only hold
two bits in HEX.

The following interrupt code demonstrates how to store the W and STATUS
registers and increment counter registers for timing.

 Interrupt Code:

 #include<P16F84A.INC>
 processor 16f84A

 UDATA

W_TEMP res 1
STATUS_TEMP res 1
 GLOBAL TIMEC1
TIMEC1 res 1
 GLOBAL TIMEC2
TIMEC2 res 1

INTERRUPT CODE 4 ;sets code start to 4th register
 GOTO PUSH

 CODE
 GLOBAL PUSH
PUSH: ;save W and status
 MOVWF W_TEMP
 SWAPF STATUS, W
 MOVWF STATUS_TEMP

ISR: ;interrupt service routine
 INCFSZ TIMEC1, F ;if zero increment next register
 GOTO POP
 INCF TIMEC2, F ;if zero increment next register

POP: ;restore W and status
 BCF INTCON, T0IF
 SWAPF STATUS_TEMP, W
 MOVWF STATUS
 SWAPF W_TEMP, F
 SWAPF W_TEMP, W

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 10/21

 RETFIE ;return from interrupt
 END

4. PWM (Pulse Width Modulation)

Pulse width modulation, in its simplest form, takes a binary number and creates a
pulse of the appropriate width, as shown in Figure 5.

Figure 5 PWM example

PWM is extremely useful for motor speed control, if a motor is turned on and off
quickly (quick enough to have smooth motion) the motor speed is determined by
the portion of time it is on. The PWM code for this project was mainly used to test
the interrupt code but will be used in a later project to create a variable speed
controller for the robot.

The code and circuitry (Figure 6) shown below can be used to create a very
simple and slow PWM to visually check whether the interrupts have been setup
correctly. Basically it takes a three bit (0-8) binary number from PORTA and uses
it to make a modulated pulse. Each segment of the pulse is one second long, so if
the input is two then the output would be high for two seconds and low for six
seconds. The code has three parts, a main function, PWM function, and an
interrupt (the interrupt code is shown above).

PWM Code:

PWM-
 #include<P16F84A.INC>
 processor 16f84A

 UDATA

PWMC res 1

001

010

011

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 11/21

GLOBAL PWM

 CODE
PWM:
 MOVLW .6 ;decrement or reset counter
 DECF PWMC, F
 BTFSC PWMC, 7
 MOVWF PWMC
 ;output the low bits of PORTA onto the low bits of PORTB
 MOVLW B'00000111'
 ANDWF PORTA, W
 IORWF PORTB, F
 MOVLW B'11111000'
 IORWF PORTA, W
 ANDWF PORTB, F
 MOVFW PORTA ;check count against input value
 ANDLW B'00000111'
 SUBWF PWMC, W
 BTFSS STATUS, C
 GOTO HIGHOUT
 GOTO LOWOUT

HIGHOUT: ;set bit 6 high
 BSF PORTB, 6
 GOTO NEXT

LOWOUT: ;set bit 6 low
 BCF PORTB, 6

NEXT:
 RETURN
 END

MAIN-

#include<P16F84A.INC>
 processor 16f84A
 __config _WDT_OFF & _PWRTE_ON & _HS_OSC & _CP_OFF

 EXTERN TIMEC1
 EXTERN TIMEC2
 EXTERN PWM

RESET CODE 0
 GOTO INIT

 CODE
INIT:
 BCF STATUS, RP1
 BSF STATUS, RP0 ;set to bank 1
 CLRF INTCON ;disable all interrupts
 MOVLW B'11111111'
 MOVWF TRISA ;make A ports input
 MOVLW B'00000000'
 MOVWF TRISB ;make B ports output
 MOVLW B'10001000'
 MOVWF OPTION_REG
 BCF STATUS, RP0 ;return to bank 0
 MOVLW B'10100000'
 MOVWF INTCON ;enable timer interrupt

START: ;checking to see if has been 1s
 BCF INTCON, GIE ;stop interrupt while checking time
 MOVLW H'FD'

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 12/21

 SUBWF TIMEC1, W
 BTFSS STATUS, Z
 GOTO NEXT
 MOVLW H'3D'
 SUBWF TIMEC2, W
 BTFSS STATUS, Z
 GOTO NEXT
 MOVLW B'10000000'
 XORWF PORTB, F
 CLRF TIMEC1 ;clearing out the timers after 1s
 CLRF TIMEC2
 CALL PWM

NEXT:
 BSF INTCON, GIE ;turning interrupts back on
 CLRWDT
 GOTO START
 END

Figure 6 PWM Test Circuit

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 13/21

5. Sending and Receiving Data

Typically when sending data a protocol is developed so that the receiving end
knows when to start and stop accepting data. A start and stop bit are used for this
purpose. Parity checking can also be added to the end of words/data ensure that
the data receive is actually what was sent. For this project, the protocol consisted
of a start bit and a long wait in-between data packets. This is an extremely
simplified method of sending and receiving data, the follow up project will create
a more robust protocol that includes a decent checking scheme.

The code shown below can be used to create a very simple sending program that
sends data at about 110Kbs. Basically it takes the input from PORTA, adds a start
bit, sends it serially, waits, and then sends PORTA again. The code has three
parts, a main function, send function, and an interrupt (the interrupt code is shown
above).

Send Code:

SEND-
 #include<P16F84A.INC>
 processor 16f84A

 UDATA

SPTR res 1 ;this points to the correct state
TEMP_A res 1 ;temp for the PORTA data
SENDC res 1 ;counter for send/wait
 GLOBAL SEND
 GLOBAL SINIT ;Initialize to put the pointer to STARTB

 CODE

SINIT:
 MOVLW STARTB
 MOVWF SPTR
 RETURN

SEND:
 MOVFW SENDC ;OUTPUT SEND COUNT
 XORWF PORTB, W
 ANDLW B'00011111'
 XORWF PORTB, F

 MOVFW SPTR ;GOTO SPTR
 MOVWF PCL

STARTB: ;sends start bit
 BSF PORTB, 6
 BSF PORTB, 5
 MOVFW PORTA
 MOVWF TEMP_A
 BSF TEMP_A, 7 ;set bits that can’t be read in
 BCF TEMP_A, 6
 MOVLW .9
 MOVWF SENDC

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 14/21

NEXTB: ;figures out next bit to output
 MOVLW ONEOUT
 BTFSS TEMP_A, 0
 MOVLW ZEROOUT
 MOVWF SPTR ;sets the pointer to the right output
 RRF TEMP_A, F
 DECFSZ SENDC, F
 RETURN
 MOVLW SENDW ;if done sending go wait for awhile
 MOVWF SPTR
 MOVLW .9 ;wait a little bit before resending data
 MOVWF SENDC
 RETURN

ONEOUT: ;output high
 BCF PORTB, 5
 BSF PORTB, 6
 GOTO NEXTB ;go figure out next bit

ZEROOUT: ;output low
 BCF PORTB, 5
 BCF PORTB, 6
 GOTO NEXTB ;go figure out next bit

SENDW:
 BCF PORTB, 6 ;go low while waiting
 DECFSZ SENDC, F
 RETURN
 MOVLW STARTB
 MOVWF SPTR
 RETURN
 END

MAIN-

#include<P16F84A.INC>
 processor 16f84A
 __config _WDT_OFF & _PWRTE_ON & _HS_OSC & _CP_OFF

 EXTERN TIMEC1
 EXTERN TIMEC2
 EXTERN SEND
 EXTERN SINIT

RESET CODE 0
 GOTO INIT

 CODE
INIT:
 BCF STATUS, RP1
 BSF STATUS, RP0 ;set to bank 1
 CLRF INTCON ;disable all interrupts
 MOVLW B'11111111'
 MOVWF TRISA ;make A ports input
 MOVLW B'00000000'
 MOVWF TRISB ;make B ports output
 MOVLW B'10001000'
 MOVWF OPTION_REG
 BCF STATUS, RP0 ;return to bank 0
 CALL SINIT

MOVLW B'10100000'
 MOVWF INTCON ;enable timer interrupt

START: ;checking to see if has been .009s

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 15/21

 BCF INTCON, GIE ;stop interrupt while checking time
 MOVLW H'90'
 SUBWF TIMEC1, W
 BTFSS STATUS, Z
 GOTO NEXT
 MOVLW H'00'
 SUBWF TIMEC2, W
 BTFSS STATUS, Z
 GOTO NEXT
 MOVLW B'10000000'
 XORWF PORTB, F
 CLRF TIMEC1 ;clearing out the timers after 1s
 CLRF TIMEC2
 CALL SEND

NEXT:
 BSF INTCON, GIE ;turning interrupts back on
 CLRWDT
 GOTO START
 END

On the other end of the process is the matching receiver PIC chip which checks
for the incoming data, process it, and outputs it in the desired manner.

The code shown below can be used to create a very simple receiving program that
continually receives data by latching on to a start bit. Basically it waits for
PORTA to go high and then begins reading in data after the initial bit. Typically
the start bit would be different than the other bits sent and the receiver would
check for this but because there is such a long wait between transmissions it is
unnecessary. The code has three parts, a main function, receive function, and an
interrupt (the interrupt code is shown above).

Receiver Code:

RECEIVE-
 #include<P16F84A.INC>
 processor 16f84A

 UDATA

RPTR res 1 ;this points to the correct state
TEMP_B res 1 ;temp for the PORTA data
RECEIVEC res 1 ;counter for bits received
WAITC res 1 ;wait counter
 GLOBAL RECEIVE
 GLOBAL RINIT ;Initialization to RECEIVE

 CODE

RINIT:
 MOVLW CHECK
 MOVWF RPTR
 MOVLW .1
 MOVWF WAITC
 RETURN

RECEIVE:
 DECFSZ WAITC, F

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 16/21

 RETURN
 MOVFW RPTR ;GOTO RPTR
 MOVWF PCL

CHECK: ;runs receive when line goes high
 MOVLW .1
 MOVWF WAITC
 BTFSS PORTA, 0
 RETURN

STARTB: ;sees start bit
 MOVLW .8
 MOVWF RECEIVEC ;number of bits to read in
 MOVLW .9 ;wait until middle of bit0
 MOVWF WAITC
 MOVLW READIN ;set wait state
 MOVWF RPTR
 BSF PORTA, 2
 BSF PORTA, 3
 RETURN

READIN:
 BCF PORTA, 3
 MOVLW B'00000100'
 XORWF PORTA, F
 RRF TEMP_B, F ;read in new bit
 BSF TEMP_B, 7
 BTFSS PORTA, 0
 BCF TEMP_B, 7
 MOVLW .6 ;wait for new bit
 MOVWF WAITC
 DECFSZ RECEIVEC, F ;check to see if 8 bits were read
 RETURN

 BCF PORTA, 2
 MOVFW TEMP_B ;finished receiving one byte ;wait
 MOVWF PORTB
 MOVLW .12 ;wait for next start
 MOVWF WAITC
 MOVLW CHECK
 MOVWF RPTR
 RETURN
 END

MAIN-

#include<P16F84A.INC>
 processor 16f84A
 __config _WDT_OFF & _PWRTE_ON & _HS_OSC & _CP_OFF

 EXTERN TIMEC1
 EXTERN TIMEC2
 EXTERN RECEIVE
 EXTERN RINIT

RESET CODE 0
 GOTO INIT

 CODE
INIT:
 BCF STATUS, RP1
 BSF STATUS, RP0 ;set to bank 1
 CLRF INTCON ;disable all interrupts
 MOVLW B'11111111'

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 17/21

 MOVWF TRISA ;make A ports input
 MOVLW B'00000000'
 MOVWF TRISB ;make B ports output
 MOVLW B'10001000'
 MOVWF OPTION_REG
 BCF STATUS, RP0 ;return to bank 0
 CALL RINIT

MOVLW B'10100000'
 MOVWF INTCON ;enable timer interrupt

START: ;checking to see if has been .0015s
 BCF INTCON, GIE ;stop interrupt while checking time
 MOVLW H'18'
 SUBWF TIMEC1, W
 BTFSS STATUS, Z
 GOTO NEXT
 MOVLW H'00'
 SUBWF TIMEC2, W
 BTFSS STATUS, Z
 GOTO NEXT
 MOVLW B'10000000'
 XORWF PORTB, F
 CLRF TIMEC1 ;clearing out the timers after 1s
 CLRF TIMEC2
 CALL RECEIVE

NEXT:
 BSF INTCON, GIE ;turning interrupts back on
 CLRWDT
 GOTO START
 END

Once both chips have been properly programmed the following test circuitry
(Figure 7) can be used. The switches on the first chip control the input into
PORTA 0-5 and the data is output on PORTB 6. The second chip reads the data in
on PORT A 0 and outputs it to the LEDs using PORTB.

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 18/21

Figure 7 Sender/Receiver Circuit

PIN1
PIN2
PIN3
PIN4
PIN5
PIN6
PIN7
PIN8
PIN9

PIN
10

PIN
11

PIN
12

PIN
13

PIN
14

PIN
15

PIN
16

PIN
17

PIN
18

P
IC16F84A

XTAL

16.25M
Hz

+5V

PIN1
PIN2
PIN3
PIN4
PIN5
PIN6
PIN7
PIN8
PIN9

PIN10
PIN11
PIN12
PIN13
PIN14
PIN15
PIN16
PIN17
PIN18

PIC16F84A

XTAL

16.25M
H

z

+5V

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 19/21

6. RF

After the sender/receiver pair have been programmed and tested using the give
circuitry, the RF can be interfaced with the test boards and then with the robot.
The following circuit diagrams should be self explanatory (Figures 8 & 9).

Figure 8 Transmitter Circuit

PIN
1

PIN
2

PIN
3

PIN
4

PIN
5

PIN
6

PIN
7

PIN
8

PIN
9

P
IN10

P
IN11

P
IN12

P
IN13

P
IN14

P
IN15

P
IN16

P
IN17

P
IN18

PIC
16F84A

XTAL

16.25M
H

z

+5V

PIN
1

PIN
2

PIN
3

PIN
4

PIN
5

PIN
6

PIN
7

PIN
8

PIN
9

PIN
10

P
IN11

P
IN12

P
IN13

P
IN14

P
IN15

P
IN16

P
IN17

P
IN18

P
IN19

P
IN20

LINX SC-P
A

ANT

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 20/21

Figure 9 Receiver Circuit

The Test Drive

The test drive of Zippy was great, he has the ability to go forward, backwards, left
right, and spin in circle. Zippy’s RF range is about 50 feet before the signal
strength dies off significantly and error protect would be needed. This project was
intended as a jumping off point for the “Zippy II Project” next semester and was
used to develop low level control for the robot.

PIN
1

PIN
2

PIN
3

PIN
4

PIN
5

PIN
6

PIN
7

PIN
8

PIN
9

PIN
10

PIN
11

PIN
12

PIN
13

PIN
14

PIN
15

PIN
16

PIN
17

PIN
18

P
IC

16F84A

XT
AL

16.25M
H

z

+5V

ANT1

PIN
1

PIN
2

PIN
3

PIN
4

PIN
5

PIN
6

PIN
7

PIN
8

PIN
9

PIN
10

PIN
11

PIN
12

PIN
13

PIN
14

PIN
15

PIN
16

PIN
17

PIN
18

PIN
19

PIN
20

LIN
X SC

-PA

Physics 344 Final Project Fall 2003 Physics Department, University of Illinois
Digital Communication By Melonee Wise Instructor: Steve Errede

Page 21/21

The Creator

Yeah, about me, I’m a Mechanical and Physics engineering double major from
Glen Ellyn, IL. My “big plans” for Zippy are to compete with him in the Jerry
Sanders Creative Design Competition in the spring. And now for an embarrassing
picture of me with Zippy!

Figure 10 Melonee and Zippy

