
Application and Analysis of a Robust Trajectory Tracking Controller

for Under-Characterized Autonomous Vehicles

Melonee Wise and John Hsu

Abstract— When developing path tracking controllers for
autonomous vehicles the dynamic constraints of the vehicle
are a critical factor. It is therefore necessary to ensure that
all tracking trajectories produced by the controller are smooth
and continuous. In this paper, a path tracking controller is
proposed and implemented on an experimental autonomous
vehicle. This tracking method decouples the low-level heading
and steering control of the vehicle from the main tracking
controller, therefore requiring less vehicle characterization. The
results of this paper will show this method yields a RMS 0.25m
cross-track error with little to no vehicle characterization.

I. INTRODUCTION

With the recent activity in autonomous vehicle develop-

ment at the DARPA Urban Challenge, many researchers

([10], [11], [12]) are focusing on developing robust path

tracking controllers. These controllers either are part of

the path planning or incorporate the low-level steering and

speed controllers. Both approaches require extensive vehicle

characterization, [2], and repeated calibration runs to ensure

stability and accuracy. Additionally most of the control

models for wheeled mobile robots and car-like vehicles are

based around the bicycle model which does not account for

tire slippage, suspension stiffness, engine throttle delay, etc.

In this paper the tracking controller is treated separately

from the heading and speed controller of the vehicle. This

pushes the vehicle characterization into the low level con-

troller so that the vehicle dynamics can be modeled using the

bicycle model. This allows for simplified implementation and

testing of the tracking algorithm. For example, adopting the

current tracking algorithm for driving the vehicle in reverse

requires minimal changes to the algorithm itself; whereas

careful characterization of the reverse steering characteristics

are required for previously cited methods.

II. THE PATH TRACKING PROBLEM

A. Problem Description

Given a planar two dimensional trajectory composed of

discrete GPS waypoints, the path follower is defined as a

module which commands the vehicle to follow the specified

path with some predefined tracking accuracy and passenger

comfort. Given the uncertainties exhibited by the envi-

ronment (uneven pavements, slippage, etc.) and nonlinear

response behaviors of an under-characterized autonomous

vehicle, a robust path follower must be able to track smoothly

This work was supported by Willow Garage
M. Wise is a Senior Engineer with Willow Garage, Menlo Park, CA

94025, USA mwise@willowgarage.com
J. Hsu is a Senior Engineer with Willow Garage, Menlo Park, CA 94025,

USA johnhsu@willowgarage.com

and consistently to the target trajectory. Through robust path

tracking, the gap between high-level path planning and low-

level hardware control of an autonomous vehicle is bridged.

1) Coordinate System: The body frame coordinates,

shown in Fig.1, is a right handed coordinate system with

y-axis pointing forward and z-axis pointing upwards. The

rotational degrees of freedoms adheres to the right-hand rule

with the exception of the yaw angle. Where yaw is left-

handed with respect to the z-axis so it has the same rotational

direction as the heading convention where 0◦ corresponds to

north and 90◦ corresponds to east.

Fig. 1. Body Frame Axis System: x, y and z axis of the vehicle’s body
frame, with rotational degrees of freedom, pitch, roll and yaw.

III. CONTROL DESIGN

A. Governing Equations

In order to track smoothly to a given trajectory, a path

must be computed from a given initial location and heading

to some target point and heading on the desired trajectory,

Fig. 2.

The in-line, cross-track, and heading errors, (ex, ey, eθ)
are given by

ex = (xt − xc)cos(θt) + (yt − yc)sin(θt) (1)

ey = −(xt − xc)sin(θt) + (yt − yc)cos(θt) (2)

eθ = θt − θc. (3)

Once the path errors are determined a cubic polynomial,

(4), can be used to satisfy dynamic constraints imposed by

Fig. 2. Heading and error definitions.

vehicle dynamics and waypoint path planning (i.e. position,

heading, and turning)[1]. The cubic polynomial is a function

of the cross track error, ey , and the constant c which dictates

the steepness of the approach, as seen in Fig. 3.

P (xp) = c(xp)
3
sign(ey) (4)

From (4) the approach path heading angle θp, can be

determined, where θt is the target heading on the desired

path. Once the approach path heading angle is calculated,

the approach path heading angle can be directly used to steer

the vehicle via a heading controller.

θp = θt − arctan(3c
(ey

c

)2/3

sign(ey)) (5)

Fig. 3. The effect of the parameter c on the approach path.

Since the current approach needs to track to a specific

GPS waypoint at every given time step, a controller for in-

line position tracking is needed as well as for cross-track

position tracking. To extend the controller for in-line error

tracking, a modified bang-bang controller (7) is used. The

estimated state velocity of the vehicle is given by

vs = ėx + (2amax |ex|)
1/2vb. (6)

where amax is the maximum acceleration of the vehicle,

and vb is scalar value. By modifying the sign function of the

bang-bang controller, the estimated state velocity changes

smoothly satisfying the dynamic constraints of the vehicle.

dvb

dt = −Avb + (B − vb) max(0, ex)
− (D + vb) max(0,−ex)

(7)

This results in an acceleration control law of the following

form

acontrol =

amax if vs/dt > amax

−amax if vs/dt < −amax

vs/dt otherwise

. (8)

The result of this control law can be used to control the

speed of the vehicle and therefore close the loop around the

in-line path error.

B. Implementation

The vehicle testing platform is an autonomized 2006

Ford Escape Hybrid. The basic software architecture of this

vehicle is presented in Fig. 4; whereas the details of the

controller hardware implementations are described in section

IV-B.1.

Fig. 4. Message Passing Architecture (MPA) construct.

The main software components of our autonomous vehicle

system are composed of a path planner, a path follower,

Message Passing Architecture (MPA), several independent

sensor data processors and a few low-level control interfaces.

The backbone of the software architecture is the MPA

which allows hardware and software driven processes to

communicate between each other by passing messages ro-

bustly and efficiently through the use of shared memory.

The basic structure of MPA is a ring-buffer queue, where all

software processes can independently retrieve data chrono-

logically or can insert new data to the end of the queue.

The input to the path follower comes from the path planner

module, where a target path is specified by a list of waypoints

in the global frame in the form of (9).

x̄i =

xi

yi

vi

ti
θi

; i = 1, n (9)

The velocity profile (vi) is assigned to the list of waypoints

based on hardware and environmental constraints such as

available torque, path curvature, terrain roughness and posted

speed limits. Given that the velocity profile has been deter-

mined, a time stamp (ti) is assigned to each element of the

waypoint list along the target trajectory.

The path planner module sends each waypoint of the target

path to the path follower based on the corresponding time

stamp. Since the target waypoints are a set of discrete path

locations, simple two-dimensional linear interpolation based

on time is used to generate each target waypoint sent to the

path follower.

The in-line and cross-track tracking errors, (ex, ey), are

defined by the distance from the vehicle’s current position

to the target waypoint at every time step. Given some finite

tracking error, a robust path follower must be able to generate

a smooth, stable and convergent landing curve to guide the

vehicle back towards the intended path. Based on the tracking

errors, the path follower computes the corresponding landing

curve, then outputs velocity (vc) and heading (θc) commands

to the MPA structure.

The velocity and steering commands are picked up by the

vehicle’s low-level PID controllers. Separate PID loops for

speed and heading control are implemented in the current

vehicle platform. The steering PID controller determines the

steering angle based on input heading angle. While two

separate PID controllers for the accelerator and the brake

works together to maintain the desired velocity. Additionally,

all low-level hardware controller PID’s are written in C/C++

languages with an average update rate of around 100Hz.

IV. SIMULATIONS AND EXPERIMENTS

A. Simulation

1) Simulator Overview: The simulation environment

is created using the open source Gazebo Project

(http://playerstage.sourceforge.net/gazebo/gazebo.html).

A snap shot of the simulator in action is shown in Fig. 5. A

Gazebo vehicle model has been created with similar mass

properties and acceleration/braking/steering characteristics

as the actual vehicle.

2) Simulator Results: Given a test path shown in Fig. 6,

the speed profile and the resulting ground tracks and cross-

track errors of the simulated runs are plotted in Figs.7(a) ∼
7(c). The speed profile in Fig. 7(c) has been generated by

limiting the overall acceleration and multiplying the result by

a weighting function proportional to the inverse of the path

curvature; thus the lateral acceleration at corners are limited

by predefined constants. From Fig.7(b) it is evident that

the cross-track error has maximum magnitude of ∼ 0.20m,

while in-line tracking error spans ±1.5m. The reason that

the in-line errors are extremely large in comparison to cross-

track errors is due to the fact that the vehicle was tuned in

favor of passenger comfort rather than tracking accuracy. By

increasing parameter amax in (8), the tracking accuracy can

be improved dramatically. Unfortunately, increasing in-line

tracking accuracy results in noticeably more aggressive ac-

celeration and braking behavior of the vehicle. In particular,

Fig. 5. A Snapshot of the Simulator

−40 −30 −20 −10 0 10 20 30
−60

−50

−40

−30

−20

−10

0

m

m

Fig. 6. Sample Test Path.

the speed control module tends to alternate rapidly between

accelerating and braking modes.

B. Experiments

1) Control Hardware Overview: The experimental plat-

form is a Ford Escape Hybrid shown in Fig. 8, which has

been reverse engineered for autonomous control. The exist-

ing core systems (steering, gear shift, accelerator, brakes,

etc.) are actuated electronically which allows for easy inter-

face with and control of these systems.

The vehicle is controlled by four custom 16Bit dsPIC

Microcontroller boards, shown in Fig. 9, which interface with

the existing Ford Escape computer hardware. The controllers

are inserted in line, using standard Ford parts, to interface

with the existing systems for easy installation, repair, or

removal. Four modules are daisy chained together via a

CAN bus and control the gear shift, accelerator, brakes, and

steering.

−40 −30 −20 −10 0 10 20 30
−60

−50

−40

−30

−20

−10

0

m

m

Car Ground Track
Command Path

(a) Simulation Ground Tracks

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

time (sec)

tr
ac

ki
ng

 e
rr

or
s

(m
)

e
x

e
y

(b) Simulation Tracking Errors

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

time (sec)

sp
ee

d
(m

/s
)

GPS Speed
Path Velocity Command

(c) Simulation Speed Profile

Fig. 7. Simulation results tracking path in Fig. 6.

Fig. 8. Experimental Ford Escape Hybrid

Fig. 9. Low Level Control Boards

i. Gear Shift Module: The gear shift module not only

electronically selects the drive gear of the vehicle; the

module also dictates whether the vehicle is in driver or

autonomous mode. This is a design feature built into

the system to quickly switch the vehicle from human

driver mode to computer controlled mode. The gear shift

module listens on the vehicle’s CAN bus to determine

the shifter position of the vehicle When the vehicle is in

low gear the computer is able to send commands, over

the computer CAN bus, controlling the gear position

and other vehicle systems.

ii. Accelerator Module: The accelerator module controls

the speed of the vehicle and the turn signals. A RPM

sensor in the transmission determines the vehicle speed

and broadcasts the speed on the vehicle CAN bus. The

accelerator monitors the speed and uses a PID controller

to maintain velocity set points dictated by the vehicle

computer. The turn signals are turned on using a simple

MOSFET switch that is activated when the module

receives turn signal command from the computer.

iii. Brake Module: The brake module is responsible for

sending brake control signals, and turning the brake

lights on and off. The Ford Escape brakes are controlled

using PWM pulses that increment and decrement an

internal counter to increase and decrease the braking

force. A PID controller in the brake module receives set

point commands from the vehicle’s computer and sends

pulses to the vehicle accordingly. The brake lights are

also turned on using a simple MOSFET switch that is

activated when the module receives a brake signal.

iv. Steering Module: The steering module uses the power

assist motor in the Ford Escape to control the steering

wheel position. A string potentiometer was added to

the steering column to obtain accurate steering angles.

The Ford Escape power assist motor relies on a torque

sensor in the steering system to determine the amount

of assist (torque) required to move the steering wheel.

Similar to the brakes, a PID controller in the steering

module receives set point commands from the vehicle’s

computer and sends torque values to the vehicle’s power

assist motor accordingly.

2) Sensor Hardware Overview: The vehicle is localized

using an integrated senor network that utilizes the vehicle

on board diagnostics and the NovAtel SPAN (Synchronized

Position Attitude and Navigation) system.

i. On Board Diagnostics: The Ford Escape Hybrid comes

equipped with Hall effect sensors on all four wheels

and a transmission RPM sensor transmit data to the

vehicle CAN bus. The on board diagnostic port on

the vehicle can be used to read the CAN bus which

transmits vehicle sensor data at a rate of 20Hz. This data

is used for simple odometry and verifying the current

position of the vehicle.

ii. NovAtel SPAN: The NovAtel SPAN system inte-

grates a GPS (NovAtel GPS-702L) and IMU (HG1700

SPAN62). The GPS-702L receives L-Band frequencies

from the OmniSTAR correction service and receives

updates at a rate of 10Hz. The HG1700 SPAN62 IMU

is a combined laser ring gyro and accelerometer with an

update rate of 100Hz. Combining these two components

the NovAtel SPAN system has a published accuracy of

0.1m and a 10 second outage accuracy of 0.39m.

3) Experimental Trials & Results: Fig.10 shows the re-

sults of tracking to the test path in Fig.6 using the current

algorithm in our actual test vehicle. As a result of dis-

crepancies between vehicle dynamics and simulator model

dynamics, the maximum cross-track errors have increases

from ∼ 0.20m to ∼ 0.40m for the actual test vehicle runs

while the in-line tracking errors on the actual test vehicle

have remained near the same levels as the simulation runs.

An additional test case was performed to examine the

performance of the path tracking algorithm under higher

lateral acceleration loads. A slalom path as shown in Fig.11

was given to the path follower to track, the results of tracking

a more aggressive path are demonstrated in Fig.12. It is

evident in Fig.12(b) that cross-track errors are increased

while in-line tracking errors remain unchanged. The increase

in cross-track error is due to the fact that the current path

tracking algorithm is unable to handle lateral sliding motions

caused by excessive lateral steering motions .

−40 −30 −20 −10 0 10 20 30
−60

−50

−40

−30

−20

−10

0

m

m

Car Ground Track
Command Path

(a) Test Path Ground Tracks

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

time (sec)

tr
ac

ki
ng

 e
rr

or
s

(m
)

e
x

e
y

(b) Test Path Tracking Errors

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

time (sec)

sp
ee

d
(m

/s
)

GPS Speed
Path Velocity Command

(c) Test Path Speed Profile

Fig. 10. Test Path Tracking Performance Results

0 50 100 150

−50

−40

−30

−20

−10

0

10

20

30

40

m

m

Fig. 11. Slalom Path.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The derivation, implementation and test results of a robust

and stable path tracking algorithm are presented in this

paper. The current path tracking scheme is well behaved

and has sub-meter accuracy without the need for detailed

characterization of vehicle dynamics. Even when pushed

to the limits, as demonstrated in the slalom test case, the

current path tracking algorithm is able to track the target

path, with some sacrifice in accuracy, but without exhibiting

any undesirable instabilities.

B. Future Works

As discussed in the conclusion, the in-line tracking con-

troller had a significant negative impact on the accuracy of

the trajectory controller. In light of this fact, future work

will be done investigating and using other in-line tracking or

velocity control methods to increase the performance of the

existing path tracking controller.

VI. ACKNOWLEDGMENTS

We would like to thank our team leader, Jonathan Stark,

without his long hours of hard work and dedication to this

project, our research would not have been possible.

REFERENCES

[1] K. C. Koh and H. S. Cho, A Smooth Path Tracking Algorithm
for Wheeled Mobile Robots with Dynamic Constraints, Journal of

Intelligent and Robotic Systems, vol. 24, 1999, pp 367-385.
[2] Gabriel Hoffmann, Claire Tomlin, et. al., Autonomous Automobile

Trajectory Tracking for Off-Road Driving: Controller Design, Experi-
mental Validation and Racing, in American Control Conference, 2007,
pp 2296-2301.

[3] Luca Consolini, Aurelio Piazzi, and Mario Tosques, Path Following
of Car-Like Vehicles Using Dynamic Inversion, International Journal

of Control, vol. 76, 2003, pp. 17241738.
[4] ChangBoon Low and Danwei Wang, Robust Path Following of Car-

Like WMR in the Presence of Skidding Effects in International

Conference on Mechatronics, Taipei, Taiwan 2005 pp. 864-869.

0 50 100 150

−50

−40

−30

−20

−10

0

10

20

30

40

m

m

Car Ground Track
Command Path

(a) Slalom Run Ground Tracks

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5

time (sec)

tr
ac

ki
ng

 e
rr

or
s

(m
)

e
x

e
y

(b) Slalom Run Tracking Errors

0 50 100 150
0

1

2

3

4

5

6

7

time (sec)

sp
ee

d
(m

/s
)

GPS Speed
Path Velocity Command

(c) Slalom Run Speed Profile

Fig. 12. Slalom Tracking Performance Results

[5] Margan Davidson and Vikas Bahl, The Scalar ǫ-Controller: A Spa-
tial Path tracking Approach for ODV, Ackerman, and Differentially
Steered Autonomous Mobile Robots, in International Conference on

Robotics and Automation, Seoul, Korea, 2001, pp. 175-180.
[6] F. Diaz del Rio, G. Jimenez , et al., A Generalization of Path Following

for Mobile Robots, in International Conference on Robotics and

Automation, Detroit, MI, 1999, pp. 7-12.
[7] Cripps Donald, Spatially-Robust Vehicle Path Tracking Using Normal

Error Feedback, in Proceedings of SPIE, vol. 4364, 2001, pp. 222-238.
[8] A. M. Bloch and N. H. McClamroch, Control and Stabilization of

Nonholonomic Dynamic Systems, in IEEE Trans. Automatic Control,
vol. 37, 1992, pp. 17461757.

[9] Yutaka J. Kanayama and Fariba Fahroo, A New Continuous-Curvature
Line/Path-Tracking Method for Car-Like Vehicles, Advanced Robotics,
vol. 13, 2000, pp. 663-689.

[10] William Travis, Robert Daily, et al., SciAutonics-Auburn Engineer-
ing’s Low-Cost High-Speed ATV for the 2005 DARPA Grand Chal-
lenge, Journal of Field Robotics, vol. 23, 2006, pp. 579-597.

[11] Isaac Miller, Sergei Lupashin, et al., Cornell University’s 2005 DARPA
Grand Challenge Entry, Journal of Field Robotics, vol. 23, 2006, pp.
625-652.

[12] Chris Urmson, Charlie Ragusa, et al., A Robust Approach to High-
Speed Navigation for Unrehearsed Desert Terrain, Journal of Field

Robotics, vol. 23, 2006, pp. 467-508.

