Melonee Wise

melonee@meloneewise.com | 438 N 9TH St., San Jose, CA, 95112, United States

EDUCATION

M.S. Mechanical Engineering
University of Illinois Urbana Champaign2004 - 2005
Urbana ChampaignB.S. Physics Engineering
University of Illinois Urbana Champaign2000 - 2004
Urbana ChampaignB.S. Mechanical Engineering
University of Illinois Urbana Champaign2000 - 2004
Urbana ChampaignB.S. Mechanical Engineering
University of Illinois Urbana Champaign2000 - 2004
Urbana ChampaignB.S. Mechanical Engineering
University of Illinois Urbana Champaign2000 - 2004
Urbana ChampaignB.S. Mechanical Engineering
University of Illinois Urbana Champaign2000 - 2004
Urbana ChampaignB.S. Mechanical Engineering
University of Illinois Urbana Champaign2000 - 2004
Urbana Champaign

VP/GM Robotics Automation <i>Zebra Technologies</i> Act as the CTO of the Robotics Automation business unit created around the Fetch Robotics acquisition.	08-2021 – present San Jose, United States
CEO and Co-founder <i>Fetch Robotics</i> Led and built the Fetch business until its acquisition by Zebra Technologies for \$305M in August 2021	08-2014 – 08-2021 San Jose, United States
CEO and Co-founder <i>Unbounded Robotics</i> Developed a next generation low cost mobile manipulation robot for the research market.	01-2013 – 06-2014 San Jose, United States
Robot Development Manager <i>Willow Garage</i> Led a team of engineers and designers to develop next generation mobile manipulation hardware.	01-2007 – 01-2013 Menlo Park, United States

SKILLS

CAD Solidworks, Autodesk, Pro Engineer, etc	• • • • •	Robotics Navigation, Manipulation, ROS, etc	• • • • •
Programming Languages C++, Python	• • • • •	Prototyping 3D printing, laser cutting, etc	••••
AWARDS			

Engelberger Award for Technology - The "Nobel Prize" of Robotics Advancing Automation Association (A3)	2022
MechSE Award for Distinguished Service Department of Mechanical Engineering at University of Illinois at Urbana Champaign	2022
Supply Chain Woman of the Year 🛛 Demand Chain Executive	2021
Technology Pioneer 🛛 World Economic Forum	2018
MechSE Distinguished Alumni Award Department of Mechanical Engineering at University of Illinois at Urbana Champaign	2016
MIT TR35 - Top Innovators Under 35 🛛 MIT Technology Review	2015

PUBLICATIONS

Fetch & Freight: Standard Platforms for Service Robot Applications International Joint Conference on Artificial Intelligence	07-2016
Towards Autonomous Robotic Butlers: Lessons Learned with the PR2 International Conference on Robotics and Automation	05-2011
Autonomous Door Opening and Plugging In with a Personal Robot International Conference on Robotics and Automation	05-2010
Model-based, hierarchical control of a mobile manipulation platform ICAPS Workshop on Planning and Plan Execution for Real-World Systems	09-2009
Application and analysis of a robust trajectory tracking controller for under-characterized autonomous vehicles Conference on Control Applications	09-2008

PATENTS

System and method for order fulfillment using robots US 11,137,742	2021
System and method for computing a probability that an object comprises a target using segment points US 11,087,239	2021
Method and system for facility monitoring and reporting to improve safety using robots US 11,059,177	2021
Method and system for facility monitoring and reporting to improve safety using robots US 11,059,176	2021
Robotic cart configured for effective navigation and multi-orientation docking US 10,908,601	2021
Method and system for selecting a preferred robotic grasp of an object-of-interest using pairwise ranking US 10,899,011	2021
System and method for automatically annotating a map US 10,853,561	2020
System and method for computing a probability that an object comprises a target US 10,699,219	2020
System and method using robots to assist humans in order fulfillment <i>US 10,691,109</i>	2020
System and method using robots to assist humans in order fulfillment S 10,562,707	2020
System and method for computing a probability that an object comprises a target US 10,515,319	2019
System and method for order fulfillment using robots <i>US 10,423,150</i>	2019
System and method for load balancing of robots to create more equivalent task loads across task servers US 10,363,659	2019
System and method for responding to emergencies using robotic assistance <i>US 10,356,590</i>	2019
System and method for determining and promoting safety of a robotic payload US 9,943,963	2018
System and method for localization of robots US 9,927,814	2018

Robotic torso sensing system and method US 9,827,669	2017
Steering column lock assembly and method of operating the same US 7,406,845	2008